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Abstract

Deep neural networks (DNNs) have a high accuracy on

image classification tasks. However, DNNs trained by such

dataset with co-occurrence bias may rely on wrong features

while making decisions for classification. It will greatly af-

fect the transferability of pre-trained DNNs. In this paper,

we propose an interactive method to direct classifiers pay-

ing attentions to the regions that are manually specified by

the users, in order to mitigate the influence of co-occurrence

bias. We test on CelebA dataset, the pre-trained AlexNet is

fine-tuned to focus on the specific facial attributes based on

the results of Grad-CAM.

1. Introduction

Many datasets feature various biases frequently, such as

co-occurrence bias, which is attributed to a lack of nega-

tive examples [5]. Strong correlations among several fea-

tured elements mean that the feature one wishes to extract

is often accompanied by other features. A network trained

by datasets featuring obvious biases cannot reliably make

decisions based only on desired features, as proven by the

the lipstick problem of [7] shown in Figure 1. Although an

attention approach may be used to improve DNN perfor-

mance [1], biased representations may still be in play.

In Large-scale CelebFaces Attributes (CelebA) dataset

[3], for example, the attributes ‘Wearing Lipstick’ and

‘Heavy Makeup’ often occur simultaneously with a high

probability. Most people in the images, not only applying

lipstick but also putting makeup on other facial parts, will be

only labelled by the attribute of ‘Wearing Lipstick’. Thus,

the network recognizes ‘Wearing Lipstick’ usually relying

on the makeup of several parts of a face, such as the eyes,

eyebrows, and mouth. In this way, a pre-trained network

lacks strong transferability from one dataset to another, be-

cause of bias in representation. To improve DNN general-

ization, it is important to focus on the correct extracted fea-

tures facilitating classification; accuracy is not everything.

The biased representations can not be simply eliminated

from a pre-trained network; it is difficult to disentangle ex-

Figure 1. Examples from the CelebA dataset. Grad-CAM shows

that a pre-trained DNN ‘lipstick’ attribute focuses on not only

the mouth region but also on the eyes, eyebrows, and other re-

gions (first row). Our fine-tuned DNN focuses on the mouth only

(second row). The predictive importance of various facial regions

(high to low) is colorized blue to red.

tracted features. Apart from directly modifying the training

dataset to balance bias, Li et al. [2] suggested that network

attention could be guided with biased data. However, self-

guidance via soft mask application is ineffective if the re-

gion of interest (ROI) overlaps with the attention map.

In this paper, we incorporate user interaction to resolve

co-occurrence issues when the attention map includes the

ROI. The user directly specifies the region on which classi-

fiers should focus, then the system re-trains the classifiers to

focus on the specified region. We test this method using fa-

cial images; we find that the approach effectively addresses

co-occurrence bias.

2. Method

An overview of our method is shown in the Figure 2.

Given a pre-trained classification DNN, we visualize the ac-

tivation in the model to localize the regions where network

focuses on for some example images. If the network makes

a classification based on biased features, the user manually

specifies the correct region on a template. This will fine-
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Figure 2. Overview of how we direct the attention of network on

‘Wearing Lipstick’ images.

tune the pre-trained network to focus on user’s defined re-

gion and direct the attention of network accordingly.

Visualization of the feature maps. Gradient-weighted

Class Activation Mapping (Grad-CAM) [4] is employed in

our method, which uses class-specific gradient information

to localize important regions in terms of classification.

Specifying region of interest (ROI). We assume that

one facial attribute corresponds to some facial regions. In

order to conveniently specify the desired location that re-

quires attention, we use Dlib1 to detect landmarks and seg-

ment the facial regions of each image. The user interface is

shown in Figure 3. The user first identifies the most impor-

tant region of an input image; this should include some of

ten pre-defined rectangular facial regions. Then the entire

specified rectangular region is used to calculate Grad-CAM

loss. Note that, the user only needs to select a rectangle in

template face illustration.

Loss function. The pre-trained network is fine-tuned us-

ing a loss function, which is a weighted combination of at-

tribute loss and Grad-CAM loss, see Equation (1). The at-

tribute loss lossa is the difference between the combined

binary cross entropy (BCE) of the predicted scores and the

labels. The Grad-CAM loss lossg is computed by compar-

ing the Grad-CAM and the user-specified regions. The pos-

itive parameters (wa, wg) are balancing weights for lossa
and lossg . Neurons with values > 0.5 on Grad-CAM vi-

sualization constitute the Grad-CAM set. The landmarks

of the specified region are mapped onto grids that are the

same size as the Grad-CAM layer. We use the Intersection

over Union (IoU) loss concept [6] to evaluate the extent of

lossg; we calculate the ratio of the overlap areas yielded by

1http://dlib.net/

Figure 3. The user interface for the lipstick problem. After loading

an input image and selecting a single class, the original image and

the visualization are shown side-by-side. The user could select

desired attention region(s) to fine-tune the pre-trained network.

prediction and ground truth (Figure 4). The prediction value

is the Grad-CAM region G value, and the ground truth is the

specified facial region S, as shown in Equation (2).

Loss = wa · lossa + wg · lossg (1)

IoUloss = −ln

(

G
⋂

S

G
⋃

S

)

, (2)

Figure 4. Grad-CAM loss in an image exemplifying the lipstick

problem. Red boxes show the Grad-CAM regions and blue boxes

indicate the specified regions.

3. Experiments

We tested our method using the CelebA dataset [3], a

large-scale facial attributes dataset containing more than

200,000 celebrity images, each featuring 41 attribute anno-

tations. We divided these images into three sets: training,

validation, and testing set. To enhance the diversity, two

image sets that showing mouth region only and concealing

eyes with sunglasses are included. Let ap and bp denote

two image sets positively annotated in terms of attributes a

and b, and let acp and bcp denote two negative sets. Then the

image sets E1 = ap
⋂

bp and E2 = ap
⋂

bcp of the test-

ing set are extracted to evaluate network fine-tuning. We

used AlexNet for facial attribute classification task which

contains five convolutional layers and three fully connected

layers. The last conv-layer delivers the Grad-CAM results.

We used three examples: ‘Heavy Makeup’ & ‘Wearing

Lipstick’, ‘High Cheekbones’ & ‘Smiling’, and ‘Chubby’ &

‘Double Chin’, in our experiments. For the attribute ‘Wear-

ing Lipstick’, the classification accuracy of the pre-trained
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Figure 5. Examples of masked images and images with sunglasses.

network was about 92.90% for the test set. Next, we spec-

ified that the network should focus only on the mouth; we

fine-tuned the pre-trained AlexNet accordingly, accompa-

nied by IoU loss. Accuracy improved to 93.25%. For the

sunglasses set, the classification accuracy improved from

83.53% to 86.61%. We also used two straightforward meth-

ods to modify the dataset in our comparison experiment.

The network No was trained using edited images of the

mouth region only; the accuracy was about 56.88%. Then

we mixed these images with the original training set to cre-

ate a network that weighted mouth regions more highly; this

trained network (Nw) reported an accuracy of 93.14%.

The Grad-CAM results for 10 selected images of the test

sets for the four networks are shown in Figure 6. It is clear

that the pre-trained network classified ‘Wearing Lipstick’

based not only on the mouth region but also by reference to

the eyebrows and eyes. Using our method, fine-tuning sig-

nificantly reduced dependence on eyebrows and eyes, em-

phasizing the mouth. The No focused on the mouth only,

but the accuracy of the test set was low. The Nw was very

accurate, but was affected by co-occurrence bias.

We compared the accuracies of the pre-trained and fine-

tuned networks using the image sets E1 and E2 shown

in Table 1. The Grad-CAM results for five images from

each set are shown in Figure 7. Images featuring the at-

tributes of both ‘Wearing Lipstick’ and ‘Heavy Makeup’

(from E1) clearly differ in terms of DNN measured atten-

tion before and after fine-tuning. For ‘Wearing Lipstick’ but

without ‘Heavy Makeup’ images (from E2), the fine-tuned

(but not the pre-trained) network detected ‘lipstick’. Thus,

the former network exhibited better transferability. The ex-

perimental results for the attributes ‘High Cheekbones’ &

‘Smiling’ and ‘Double Chin’ & ‘Chubby’ are shown in Fig-

ure 7.

3.1. Training and test details

We performed all experiments using PyTorch running on

a PC featuring a GPU GTX 1080 processor. We trained

AlexNet via early stopping of the training and validation

sets. Optimization was achieved using the stochastic gra-

dient descent (SGD) (with momentum) method. The learn-

ing rate and the momentum were 0.01 and 0.9, respectively,

during both training and fine-tuning. The batch size was

256. All fine-tuning results were derived by performing

single-epoch AlexNet runs. The training and fine-tuning

epoch times were about 6 and 10 min, respectively. The

Table 1. The accuracies afforded by each network (three exam-

ples).

‘Wearing Lipstick’ & ‘Heavy Makeup’

Network test set E1 E2

Pre-trained 92.90% 98.06% 82.17%

Center loss 93.26% 98.29% 83.23%

IoU loss 93.25% 98.31% 83.31%

‘High Cheekbones’ & ‘Smiling’

Network test set E1 E2

Pre-trained 63.53% 70.22% 47.41%

IoU loss 65.56% 71.42% 61.33%

‘Double Chin’ & ‘Chubby’

Network test set E1 E2

Pre-trained 84.18% 90.92% 81.77%

IoU loss 84.79% 94.32% 86.45%

mouth region weight was triple that of other facial parts.

We set (wa, wg) to (1, 0, 5.0), (1.0, 4.0), and (1.0, 3.0) in

the ‘Wearing Lipstick’, ‘High Cheekbones’, and ‘Double

Chin’ experiments, respectively.

4. Conclusion

We developed a method whereby a user can manually

instruct a pre-trained DNN network to focus on only rele-

vant features; this eliminates co-occurrence bias that may

be present in a dataset. We used the CelebA dataset to solve

the lipstick problem; our method reduced the effects of co-

occurring features in the pre-trained network; classification

accuracy improved greatly. However, face landmark recog-

nition accuracy affected our results. In the future, we will

eschew landmarks. Additionally, we will test our method

employing other DNN models (VGG and ResNet).
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Figure 6. A comparison of results afforded by the four networks.

E1 E2
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Cheekbones’, and ‘Double Chin are shown in the first to third blocks, respectively. In each block, the results afforded by the pre-trained
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